Руководства, Инструкции, Бланки

окт сетчатки глаза руководство img-1

окт сетчатки глаза руководство

Рейтинг: 4.0/5.0 (1830 проголосовавших)

Категория: Руководства

Описание

ОКТ глаза: суть процедуры, показания и противопоказания

ОКТ глаза

Не секрет, что любое лечение требует предварительного обследования и выявления причины развития недуга. В случае с заболеваниями глаз диагностика является обязательным условием для дальнейшего успешного выздоровления. И чем больше информации дает исследование глаза, тем лучше. Вот почему такая процедура, как оптическая когерентная томография (ОКТ), считается одной из наиболее востребованных в области офтальмологии. Узнать, что выявляет этот метод исследования, кому показана диагностика и есть ли у нее недостатки, вы сможете, внимательно изучив нашу статью.

Суть процедуры и показания к проведению ОКТ глаза

Рассматриваемый вид исследования представляет собой высокочастотный, бесконтактный метод диагностики различных нарушений зрения, патологий сетчатки глаза, изменений макулы. С помощью ОКТ можно увидеть самые мелкие срезы центральной части сетчатки, своевременно выявить нарушения в ее состоянии, а также оценить остроту зрения. При этом диагностика подразумевает бесконтактное воздействие, поскольку во время процедуры используется лишь луч лазера или инфракрасное освещение. Результатом ОКТ является двух- или трехмерный снимок глазного дна.

Такую диагностику проводят при следующих патологических состояниях органов зрения:

  • после операций на глазах;
  • при патологиях зрительного нерва или роговицы;
  • при глаукоме;
  • дистрофии сетчатки ;
  • сахарном диабете.

Отметим, что метод исследования глаза ОКТ позволяет диагностировать любые патологические состояния зрительных органов еще на ранней стадии. Это способствует выбору наиболее результативной схемы лечения.

Как выполняют процедуру ОКТ?

Целью оптической когерентной томографии является измерение времени задержки луча света, отражающегося на исследуемой ткани зрительного органа. В отличие от современных приборов, которые не способны выполнить такую задачу на маленьком пространстве, ОКТ справляется с этим на основе световой интерферометрии. Во время диагностики врач имеет возможность точно определить структуру сетчатки по слоям, подробно визуализировать ее изменения, выявить степень заболевания.

По своей сути, механизм работы ОКТ напоминает ультразвуковое исследование. Однако в нашем случае используются не акустические волны, а лучи инфракрасной лампы. Это позволяет получить детальную информацию о состоянии зрительного нерва и сетчатки глаза. Процедура начинается с занесения личных данных пациента в карту или базу компьютера. Пациент смотрит глазом в специальную мигающую статистическую точку, камера приближается до тех пор, пока изображение не будет выведено на монитор. При необходимости камеру фиксируют и выполняют сканирование. Завершающим этапом процедуры является очищение и выравнивание сканированного материала от помех. На основе полученных результатов осуществляются рекомендации и лечение.

Существует еще трехмерный вид ОКТ. Принцип работы такого аппарата отличается наличием специальной компьютерной программы, которая предоставляет трехмерную визуализацию определенной части глаза. Такой результат получается благодаря линейным сканам, которые выявляют все патологии в зрительных органах. Одновременно со сканированием сетчатки есть возможность получить и снимок глазного дна. Это позволяет доктору сравнить и проанализировать возможные изменения, выявленные до сканирования глаза. В процессе проведения такой диагностики используется лазерный прибор. Результаты обследования воспроизводятся в виде таблиц, протоколов и карт, по которым возможно дать реальную оценку структуры и среды.

Противопоказания

Методом ОКТ невозможно получить качественное изображение при сниженной прозрачности сред. Исследование не проводят у пациентов, которые не могут обеспечить неподвижную фиксацию взгляда на протяжении времени сканирования (2,0-2,5 секунд). Кроме того, если пациенту накануне исследования проводили офтальмоскопию с использованием панфундусскопа, линзы Гольдмана либо гониоскопию. то проведение ОКТ возможно только после вымывания контактной среды из конъюнктивальной полости.

Альтернативными методами оптической когерентной томографии являются Гейдельбергский ретинальный томограф, ФАГ, ультразвуковая биомикроскопия, ИОЛ-Мастер, однако с помощью этих исследований можно получить лишь часть информации, которую дает ОКТ.

Другие статьи

Оптическая когерентная томография глаза

Оптическая когерентная томография глаза

Оптическая когерентная томография (ОКТ) — оптический метод исследования, позволяющий отображать структуру биологических тканей организма в поперечном срезе с высоким уровнем разрешения, обеспечивая получение прижизненной морфологической информации на микроскопическом уровне. Действие ОКТ основано на принципе низкокогерентной интерферометрии.

Метод позволяет оценить величину и глубину светового сигнала, отражённого от различных по оптическим свойствам тканей. Осевое разрешение порядка 10 мкм обеспечивает наиболее хорошее из всех существующих методов исследования и отображения тканевых микроструктур. Методом ОКТ определяют эхозадержку отражённой световой волны с измерением интенсивности и глубины сигнала. При фокусировании на ткани-мишени светового луча происходят его рассеивание и частичное отражение от внутренних микроструктур на различных глубинах исследуемых тканей (рис. 17-1).

Механизм аналогичен таковому при ультразвуковом А-сканировании, суть которого заключена в измерении времени, за которое импульс акустической волны проходит от источника ультразвука до цели и обратно к принимающему устройству. В ОКТ вместо звуковой волны применяют пучок когерентного света инфракрасного диапазона с длиной волны 820 нм.

Схему применяемого в офтальмологии оптического когерентного томографа можно представить следующим образом. В качестве источника излучения в устройстве используется суперлюминесцентный диод с длиной когерентности излучения 5-20 мкм. Интерферометр Майкельсона встроен в аппаратную часть прибора, в объектном плече расположен конфокальный микроскоп (фундус-камера или щелевая лампа), в опорном плече - блок временной модуляции.

Видимую картину и траекторию сканирования исследуемой области посредством видеокамеры выводят на монитор. Компьютер обрабатывает полученную информацию и сохраняет её в виде графических файлов в базе данных. Оптические когерентные томограммы представлены в виде логарифмической чёрно-белой шкалы. Для лучшего восприятия изображение трансформируют в псевдоцветное, где участкам с высокой степенью светоотражения соответствуют красный и белый цвет, оптически прозрачным - чёрный.

Цель

Современная ОКТ — бесконтактная неинвазивная технология, которую используют для исследования морфологии переднего и заднего отрезка глазного яблока in vivo. Она позволяет выявить, записать и количественно оценить состояние сетчатки и прилежащего СТ, зрительного нерва, а также измерить толщину и определить прозрачность роговицы, исследовать состояние радужки и УПК. Возможность многократного повторения исследований и сохранения полученных результатов в памяти компьютера даёт возможность проследить динамику патологического процесса.

Показания

ОКТ позволяет получить ценную информацию как о состоянии нормальных структур глаза, так и о проявлении патологических состояний, таких, как различные помутнения роговицы, в том числе после рефракционных операций, иридоцилиарные дистрофии, тракционный витреомакулярный синдром, макулярные разрывы и предразрывы, макулодистрофии, макулярные отёки, пигментный ретинит, глаукома и прочее.

Противопоказания

Методом ОКТ невозможно получить качественное изображение при сниженной прозрачности сред. Исследование затруднено у пациентов, которые не могут обеспечить неподвижную фиксацию взора на протяжении времени сканирования (2,0-2,5 с).

Подготовка

Процедура не требует дополнительной подготовки. Однако расширение зрачка позволит получить более качественное изображение структур заднего отрезка глаза.

Методика и последующий уход

Технически оптическую когерентную томографию осуществляют следующим образом. После ввода данных пациента (номер карты, фамилия, имя, дата рождения) приступают к исследованию. Пациент фиксирует взгляд на мигающем объекте в линзе фундус-камеры. Камеру приближают к глазу пациента до тех пор, пока изображение сетчатки не отобразится на мониторе. После этого следует зафиксировать камеру нажатием кнопки фиксатора и отрегулировать чёткость изображения. Если острота зрения низкая и пациент не видит мигающий объект, то следует использовать внешнюю подсветку, а пациент должен не мигая смотрен, прямо перед собой. Оптимальное расстояние между исследуемым глазом и линзой камеры 9 мм. Исследование проводят в режиме perform scans (выполнение сканирования) и контролируют с помощью панели управления, представленной в виде регуляторных кнопок и манипуляторов, разделённых на шесть функциональных групп.

Далее осуществляют выравнивание и очищение выполненных сканов от помех. После обработки данных производят измерение исследуемых тканей и анализ их оптической плотности. Полученные количественные измерения можно сравнивать со стандартными нормальными значениями или значениями, полученными во время предыдущих обследований и сохранёнными в памяти компьютера.

Интерпретация

Установление клинического диагноза должно быть основано прежде всего на качественном анализе полученных сканов. Следует обращать внимание на морфологию тканей (изменение внешнего контура, взаимоотношения различных слоев и отделов, взаимоотношения с соседними тканями), изменение светоотражения (повышение или понижение прозрачности, наличие патологических включений). Количественный анализ позволяет выявить утолщение или истончение как слоя клеток, так и всей структуры, её объём, получить карту исследуемой поверхности.

Далее приведены примеры интерпретации томограмм, полученных в норме и при некоторых заболеваниях.

Томография роговицы. Важно точно локализовать имеющиеся структурные изменения и рассчитать их параметры: это даёт возможность более корректно выбрать тактику лечения и объективно оценить его эффективность. В некоторых случаях ОКТ роговицы считают единственным методом, позволяющим рассчитать её толщину (рис. 17-2). Большое преимущество для повреждённой роговицы — бесконтактность методики.

Томография радужки даёт возможность выделить передний пограничный слой, строму и пигментный эпителий. Отражающая способность этих слоев различается в зависимости от количества содержащегося в слоях пигмента: на светлых, слабопигментированных радужках самые большие отражённые сигналы идут от заднего пигментного эпителия, передний пограничный слой чётко не визуализирован. Ранние патологические изменения радужки, выявляемые с помощью ОКТ считают значимыми для постановки диагноза в доклинической стадии при синдроме пигментной дисперсии, псевдоэксфолиагивном синдроме, эссенциальной мезодермальной дистрофии, синдроме Франк-Каменецкого.

Томография сетчатки. В норме на ОКТ выявляют правильный профиль макулы с углублением в центре (рис. 17-3).

Слои сетчатки дифференцируют согласно их светоотражающей способности, равномерные по толщине, без очаговых изменений. Высокой светоотражающей способностью обладает слой нервных волокон и пигментного эпителия, средняя степень светоотражения характерна для плексиформного и ядерного слоя сетчатки, практически прозрачен слой фоторецепторов. Наружный край сетчатки на ОКТ ограничен высокофоторефлектирующим ярко-красным слоем толщиной около 70 мкм, составляющим комплекс пигментного эпителия сетчатки (ПЭС) и хориокапилляров. Более тёмная полоса (на томограмме расположена непосредственно перед комплексом "ПЭС/хорио-капилляры") представлена фоторецепторами. Ярко-красная линия на внутренней поверхности сетчатки соответствует слою нервных волокон. СТ в норме оптически прозрачно и на томограмме имеет чёрный цвет. Резкий контраст между окрашиванием тканей позволил производить измерение толщины сетчатки. В области центральной ямки жёлтого пятна она составила в среднем около 162 мкм, у края фовеа - 235 мкм.

Идиопатические макулярные разрывы дефекты сетчатки
в области жёлтого пятна, возникающие без какой-то видимой причины у пациентов пожилого возраста. Использование ОКТ даёт возможность точно диагностировать заболевание на всех его этапах, определять тактику лечения и контролировать его эффективность. Так, для начального проявления идиопатического макулярного разрыва, называемого предразрывом, характерно наличие фовеолярной отслойки нейроэпителия вследствие витреофовеолярной тракции. При ламеллярном разрыве отмечают дефект внутренней поверхности сетчатки, при этом слой фоторецепторов сохранён. Сквозной разрыв (рис. 17-4) дефект сетчатки на всю глубину.

Вторым по влиянию на зрительные функции признаком, который можно выявить с помощью ОКТ, считают дегенеративные изменения сетчатки вокруг разрыва. И наконец, наличие или отсутствие витреомакулярных тракций считают важным прогностическим признаком. При анализе томограммы следует оценивать толщину сетчатки в макуле, минимальный и максимальный диаметр разрыва (на уровне ПЭС), толщину отёка по краю разрыва, диаметр интраретинальных кист. Важно обращать внимание на сохранность слоя ПЭС, степень дегенерации сетчатки вокруг разрыва (определяют по уплотнению тканей и появлению их красного окрашивания на томограмме).

Возрастная макулодистрофия (ВМД) группа хронических дегенеративных нарушений с неизвестным этиопатогенезом, которыми страдают пожилые пациенты. ОКТ может быть использована для диагностики изменений структур заднего полюса глаза на различных этапах развития ВМД. Измеряя толщину сетчатки, можно объективно проследить эффективность проводимой терапии. Далее мы приводим клинические случаи, которые позволяют более полно представить изменения сетчатки, происходящие на различных этапах развития ВМД (рис. 17-5, 17-6).

Диабетический макулярный отёк - одна из наиболее тяжёлых, прогностически неблагоприятных и трудно поддающихся лечению форм ДР. ОКТ позволяет оценить толщину сетчатки, наличие интраретинальных изменений, степень дегенерации тканей, а также состояние прилежащего витреомакулярного пространства (рис. 17-7).

Зрительный нерв. Высокая разрешающая способность ОКТ позволяет хорошо различить слой нервных волокон и измерить его толщину. Толщина слоя нервных волокон хорошо коррелирует с функциональными показателями, и прежде всего с полями зрения. Слой нервных волокон имеет высокое обратное рассеивание и, таким образом, контрастирует с промежуточными слоями сетчатки, так как аксоны нервных волокон ориентированы перпендикулярно пучку ОКТ наконечника. Томографию ДЗН можно проводить радиальными и кольцевыми сканами. Радиальные сканы через ДЗН позволяют получить изображение диска в поперечном сечении и оценить экскавацию, толщину слоя нервных волокон в перипапиллярной зоне, а также угол наклона нервных волокон относительно поверхности ДЗН и сетчатки (рис. 17-8).

Трёхмерная информация параметров диска может быть получена на основе серии томограмм, выполненных в различных меридианах, и позволяет измерить толщину слоя нервных волокон в различных участках вокруг ДЗН и оценить их структуру. "Развёрнутая" томограмма представлена в виде плоского линейного снимка. Толщина слоя нервных волокон и сетчатки может быть автоматически обработана компьютером и представлена на экране как усреднённая величина всего скана, квадранта (верхнего, нижнего, височного, носового), часа или индивидуально для каждого скана, содержащего снимок. Эти количественные намерения можно сравнивать со стандартными нормальными значениями или значениями, полученными во время предыдущих обследований. Это позволяет выявлять как локальные дефекты, так и диффузную атрофию, что может быть использовано для объективной диагностики и мониторинга патологических процессов при ней родегенеративных заболеваниях.

Застойный диск - офтальмологический симптом повышения внутричерепного давления. ОКТ считают объективным методом, позволяющим определить, измерить и проследить в динамике степень выстояния ДЗН. Оценивая уровень светоотражения тканей, можно оценить как гидратацию тканей, так и степень их дегенерации (рис. 17-9).

Ямка зрительного нерва - врождённая аномалия развития. Наиболее частым осложнением ямки зрительного нерва считают расслоение (шизис) сетчатки в макуле. ОКТ чётко иллюстрирует дефекты ДЗН и расслоение сетчатки, изменения, происходящие в фовеа (рис. 17-10).

Пигментный ретинит, или тапеторетинальная абиотрофия. — наследственное прогрессирующее заболевание органа зрения с первичным генетически детерминированным поражением фоторецепторного слоя и ПЭС. Оценить состояние хориоретинального комплекса и тяжесть развития заболевания можно с помощью ОКТ. На томограммах оценивают толщину слоя фоторецепторов, нервных волокон и нейроглии сетчатки, прозрачность слоев сетчатки относительно стандартной цветовой шкалы прибора, состояние ПЭС и слоя хориокапилляров. Уже в латентной стадии пигментного ретинита при отсутствии клинических проявлений и офтальмоскопических признаков заболевания обнаруживают характерные изменения в виде уменьшения толщины слоя фоторецепторов, снижения его прозрачности, сегментов и повышенным метаболизмом пигментного эпителия. ОКТ позволяет осуществлять мониторинг патологического процесса и может быть использована в диагностике пигментного ретинита, включая беспигментную форму, в том числе и у детей, когда из-за маленького возраста ребёнка и его неадекватного поведения невозможно проведение функциональных методов исследования.

Операционные характеристики

Источник светового сигнала — суперлюминесцентный диод с длиной волны 820 нм для сетчатки и 1310 нм для переднего отрезка. Тип сигнала — оптическое рассеивание от ткани. Поле изображения: 30 мм по горизонтали и 22 мм по вертикали для заднего отрезка, 10-16 мм - для переднего. Разрешение: продольное - 10 мкм, поперечное — 20 мкм. Скорость сканирования — 500 аксиальных срезов в секунду.

Факторы, влияющие на результат

Если пациенту накануне проводили офтальмоскопию с использованием панфундусскопа, линзы Гольдмана либо гониоскопию, проведение ОКТ возможно только после вымывания контактной среды из конъюнктивальной полости.

Осложнения

Используемое излучение инфракрасного диапазона незначительной мощности не оказывает повреждающего воздействия на исследуемые ткани, не имеет ограничений по соматическому состоянию пациента и исключает нанесение травмы.

Альтернативные методы

Часть информации, которую даёт ОКТ, можно получить с помощью Гейдельбергского ретинального томографа, ФАГ, ультразвуковой биомикроскопии, ИОЛ-Мастера и т.п.

Оцените статью:

Оптическая когерентная томография глаза (ОКТ

Оптическая когерентная томография глаза (ОКТ)

Для точной диагностики и лечения любых болезней глаз необходимо предварительное обследование. Один из методов исследования, которые не связаны с непосредственным проникновением внутрь тканей и органов – оптическая когерентная томография (ОКТ, по английски - OCT). Это высокоточный метод диагностики, который может предоставить врачу очень много полезной информации.

Принцип работы оптической когерентной томографии напоминает ультразвуковое исследование. Разница состоит в том, что обследование проводится не при помощи акустических волн, а с использованием коротковолнового (около 1 микрометра) инфракрасного излучения. Анализ времени отражения луча от исследуемой области дает возможность получить очень точные сведения о состоянии тканей глаза. Благодаря высокому разрешению современных томографов этот метод позволяет на микроскопическом уровне определять патологии, которые невозможно выявить при помощи офтальмоскопии и других способов обследования. Особенно большое значение оптическая когерентная томография имеет в диагностике болезней сетчатки (прежде всего центральной ее части – макулы) и зрительного нерва.

Метод ОКТ позволяет с большой точностью диагностировать состояние тканей глаза при глаукоме и макулодистрофии, выявить степень прогрессирования болезни и определить успешность лечения.

Виды ОКТ (OCT)

Наиболее распространенными видами исследования являются:

Оптическая когерентная томография диска зрительного нерва (ДЗН)

Особое внимание исследования диска зрительного нерв методом ОКТ уделяют при таких заболеваниях как глаукома, невритах и ишемических нейропатий зрительного нерва, гипоплазиях и т.д. При этом врач-офтальмолог получает точные параметры ДЗН и их соотношение: вертикальный и горизонтальный размер, его площадь. Данные могут использоваться как при постановке или уточнении диагноза, так и для сравнения в динамике (до и после лечения) для оценки эффективности.

Оптическая когерентная томография сетчатки (макулы)

При ОКТ сетчатки может исследоваться как центральная её часть - макула (наиболее часто), так и периферические отделы. Исследование макулы рекомендовано при макулодистрофиях (влажной и сухой форме), кровоизлияниях, отеках и разрывах макулярной области. Диагностику проводят так же при различных формах ретинопапатии (диабетической, гипертонической), ретиношизисе, опухолях, воспалительных явлениях (хориоретинитах) - как при установке диагноза, так и для контроля лечебного процесса.

Для большей точности обследования оптическую когерентную томографию сочетают с флуоресцентной ангиографией сетчатки и другими методами диагностики. Такой подход дает врачу возможность получить исчерпывающую информацию о патологии и выбрать самый эффективный метод терапии.

Оптическая когерентная томография роговицы

ОКТ роговицы проводят при таких её заболеваниях, как: кератоконус и кератоглобус, дистрофиях, до и после хирургических вмешательств на роговой оболочке (лазерной коррекции зрения, кросс-линкинге, установке стромальных колец, кератопластике. Данное исследование бесконтактно и безболезненно для пациента, но при этом дает врачу полное представление об изучаемой структуре глаза: карту роговицы со всеми её слоями по всей площади.

Оптический когерентный томограф

Оптический когерентный томограф – специальный лазерный прибор, который применяется в офтальмологическом обследовании для диагностики болезней сетчатой оболочки глаза Высочайшее разрешение этого прибора (8–10 микрон) дает возможность получать детализированные пространственные изображения слоев ткани в высоком качестве, поэтому этот метод имеет огромное преимущество пред другими способами обследования. Процедура не оказывает травмирующего воздействия на живые ткани – это также одно из неоспоримых достоинств метода ОКТ.

Широкое распространение получили более точные и быстрые приборы нового поколения – спектральные томографы. Эти аппараты в секунду способны выполнять 25000 линейных сканов, что превосходит скорость работы приборов предыдущего поколения в десятки раз. В томографах этого типа отраженный луч излучения раскладывается на различные части спектра и фиксируется высокоскоростной видеокамерой.

В нашем офтальмологическом центре мы используем новейший оптический когерентный томограф RTVue-100, производства США, позволяющий получить максимально точные результаты.

Специальная компьютерная программа, основываясь на данных линейных сканов, показывает трехмерное изображение области сетчатки или другой исследуемой структуры. Высокое качество этого изображения позволяет врачу детально изучать поверхности исследуемых участков, четко видеть границы пораженной области, отслеживать прогрессирование патологических процессов. Например, при глаукоме оптическая когерентная томография позволяет получить 3D-изображение головки зрительного нерва, по которому можно точно оценить характер и степень заболевания.

Цены на оптическую когерентную томографию глаза

Стоимость ОКТ (OCT) центрально области сетчатки (макулы) - 2 000 руб.

Стоимость ОКТ (OCT) диска зрительного нерва (ДЗН) - 2 000 руб.

Стоимость ОКТ (OCT) роговицы глаза - 1 000 руб.

В офтальмологическом центре "МГК-Диагностик" действуют различные акции и скидки, которые могут существенно снизить цену исследования. Уточняйте подробности в разделе "Акции" или у наших администраторов.

Цены и где сделать оптическую когерентную томографию сетчатки глаза (макулы, диска зрительного нерва)

Цены на оптическую когерентную томографию (OCT или ОКТ) сетчатки глаза (макулы и диска зрительного нерва)

Оптическая когерентная томография сетчатки (сокращенно ОКТ или OCT - Optical coherence tomography) – метод световой инерферометрии, позволяющий получить изображения (срезы) сетчатки глаза (зоны макулы, диска зрительного нерва) и роговицы. Процедура бесконтактна и абсолютно безболезненная, имеет невысокую стоимость и проводится во многих офтальмологических клиниках.

При этом данный метод исследования дает ценную информацию врачу-офтальмологу при различных заболеваниях глаз, таких как:

  • Патология макулярной области сетчатки (отеки, разрывы, дистрофии)
  • Сосудистой патологии (тромбозы, кровоизлияния, диабетической ретинопатии)
  • Витреоретинальной патологии (эпиретинальная мембрана, тяжи стекловидного тела )
  • Изменениях диска зрительного нерва (при отеках, невритах, глаукоме )

Оптическая когерентная томография сетчатки – собирательный термин. Глазные клиники Москвы предлагают следующие виды обследований: отдельно макулярную область, отдельно диск зрительного нерва или сразу несколько элементов. Как правило, в последнем случае цена несколько выше. Отдельно может обследоваться роговица глаза.

Где сделать оптическую когерентную томографию сетчатки глаза?

Данный вид исследования доступен во многих глазных клиниках и офтальмологических центрах Москвы: коммерческих и государственных. Вы можете выбрать среди медицинских учреждений по цене, уровню клиники или по территориальному признаку (что ближе). Важная составляющая исследования – трактовка результатов (выдача заключения) о результатах ОКТ, т.к. именно она и влияет на постановку диагноза. Ниже мы приводим список клиник, где можно провести исследование с ценами на него.

Стоимость оптической когерентной томографии сетчатки глаза

Оптическая когерентная томография

Оптическая когерентная томография ♥

ОКТ - современный неинвазивный бесконтактный метод, который позволяет визуализировать различные структуры глаза с более высоким разрешением (от 1 до 15 микрон), чем ультразвуковое исследование. ОКТ является своего рода видом оптической биопсии, благодаря которой не требуется удаления участка ткани и его микроскопического исследования.

ОКТ является надежным, информативным, чувствительным тестом (разрешение составляет 3 мкм) в диагностике многих заболеваний глазного дна. Этот неинвазивный метод исследования, не требующий использования контрастирующего вещества, предпочтителен во многих клинических случаях. Полученные изображения можно проанализировать, оценить количественно, сохранить в базе данных пациента и сравнить с последующими изображениями, что позволяет получить объективную документированную информацию для диагностики и мониторинга заболевания.

Для качественного изображения необходима прозрачность оптических сред и нормальная слезная пленка (или искусственная слеза). Исследование затруднено при миопии высокой степени, помутнении оптических сред на любом уровне. В настоящее время сканирование осуществляется в пределах заднего полюса, однако быстрое развитие технологий обещает в ближайшем будущем возможность сканирования всей сетчатки.

Впервые использовать концепцию оптической когерентной томографии в офтальмологии предложил американcкий ученый-офтальмолог Кармен Пулиафито в 1995 году. Позже, в 1996-1997 гг. первый прибор был внедрен в клиническую практику фирмой Carl Zeiss Meditec. В настоящее время при помощи этих устройств возможно проведение диагностики заболеваний глазного дна и переднего отрезка глаза на микроскопическом уровне.

Физические основы метода

Обследование основано на том, что ткани организма в зависимости от структуры по-разному могут отражать световые волны. При его проведении измеряется время задержки отраженного света и его интенсивность после прохождения через ткани глаза. Учитывая очень высокую скорость световой волны, прямое измерение этих показателей невозможно. Для этого в томографах используется интерферометр Майкельсона.

Низкокогерентный луч света инфракрасного спектра с длиной волны 830 нм (для визуализации сетчатки) или 1310 нм (для диагностики переднего отрезка глаза) разделяется на два пучка, один из которых направляется к исследуемым тканям, а другой (контрольный) – к специальному зеркалу. Отражаясь, оба воспринимаются фотодетектором, образуя интерференционную картину. Она, в свою очередь, анализируется программным обеспечением, и результаты представляются в виде псевдоизображения, где в соответствии с предустановленной шкалой участки с высокой степенью отражения света окрашиваются в "теплые" (красный) цвета, с низкой - в "холодные" вплоть до черного.

Более высокой светоотражающей способностью обладает слой нервных волокон и пигментного эпителия, средней - плексиформный и ядерный слои сетчатки. Стекловидное тело оптически прозрачно и в норме имеет на томограмме черный цвет. Для получения трехмерного изображения сканирование проводится в продольном и поперечном направлениях. Проведение ОКТ может быть затруднено наличием отека роговицы, помутнением оптических сред, кровоизлияниями.

Метод оптической когерентной томографии позволяет:

  • визуализировать морфологические изменения сетчатки и слоя нервных волокон, а также и оценить их толщину;
  • оценить состояние диска зрительного нерва;
  • осмотреть структуры переднего отрезка глаза и их взаимное пространственное расположение.
Показания к ОКТ

ОКТ - это абсолютно безболезненная и кратковременная процедура, но она дает отличные результаты. Для проведения обследования пациенту необходимо зафиксировать взгляд на специальной метке обследуемым глазом, а при невозможности сделать это – другим, лучше видящим. Оператор выполняет несколько сканирований, а затем выбирает лучшее по качеству и информативности изображение.

При обследовании патологий заднего отдела глаза:

  • дегенеративные изменения сетчатки (врожденные и приобретенные, ВМД)
  • кистоидный макулярный отек и макулярный разрыв
  • отслойка сетчатки
  • эпиретинальная мембрана
  • изменения диска зрительного нерва (аномалии, отек, атрофия)
  • диабетическая ретинопатия
  • тромбоз центральной вены сетчатки
  • пролиферативная витреоретинопатия.

При обследовании патологий переднего отдела глаза:

  • для оценки угла передней камеры глаза и работы дренажных систем у пациентов с глаукомой
  • в случае глубоких кератитов и язв роговой оболочки глаза
  • во время осмотра роговицы в ходе подготовки и после выполнения лазерной коррекции зрения и кератопластики
  • для контроля у пациентов с факичными ИОЛ или интрастромальными кольцами.

При диагностике заболеваний переднего отдела глаза ОКТ используется при наличии язв и глубоких кератитов роговой оболочки глаза, а также в случае диагностики пациентов с глаукомой. ОКТ применяют в том числе и для контроля за состоянием глаз после лазерной коррекции зрения и непосредственно перед ней.

Кроме того, метод оптическая когерентной томографии широко применяется для исследования заднего отдела глаза на наличие различных патологий, в том числе отслойка или дегенеративные изменения сетчатки, диабетическая ретинопатия, а также ряд других заболеваний

Анализ и интерпретация ОКТ

Применение классического Картезианского метода к анализу изображений ОКТ не является бесспорным. Действительно, получаемые изображения настолько сложны и разнообразны, что их нельзя рассматривать просто как задачу, решаемую методом сортировки. При анализе томографического изображения должны учитываться

  • форма среза,
  • толщина и объем ткани (морфологические особенности),
  • внутренняя архитектоника (структурные особенности),
  • взаимоотношения зон высокой, средней и низкой рефлективности как с особенностями внутренней структуры, так и морфологии ткани,
  • наличие аномальных образований (аккумуляция жидкости, экссудат, кровоизлияние, новообразования и т.д.).

Патологические элементы могут обладать различной рефлективностью и формировать тени, что еще больше изменяет внешний вид изображения. Кроме того, нарушения внутренней структуры и морфологии сетчатки при различных заболеваниях создают определенные трудности при распознавании природы патологического процесса. Все это усложняет любые попытки проведения автоматической сортировки изображений. В то же время мануальная сортировка также не всегда надежна и сопряжена с риском ошибок.

Анализ изображения ОКТ состоит из трех базовых ступеней:

  • анализ морфологии,
  • анализ структуры сетчатки и хориоидеи,
  • анализ рефлективности.

Детальное изучение сканов лучше проводить в черно-белом изображении, нежели цветном. Оттенки цветных изображений ОКТ заданы программным обеспечением системы, каждый оттенок связан с определенной степенью рефлективности. Поэтому на цветном изображении мы видим большое разнообразие цветных оттенков, в то время как в действительности имеет место последовательное изменение рефлективности ткани. Черно-белое изображение позволяет выявить минимальные отклонения оптической плотности ткани и рассмотреть детали, которые могут остаться незамеченными на цветном изображении. Некоторые структуры могут быть лучше видны на негативных изображениях.

Анализ морфологии включает изучение формы среза, витреоретинального и ретинохориоидального профиля, а также хориосклерального профиля. Оценивается также объем исследуемой области сетчатки и хориоидеи. Сетчатка и хориоидея, выстилающие склеру, имеют вогнутую параболическую форму. Фовеа представляет собой вдавление, окруженное областью, утолщенной за счет смещения сюда ядер ганглиозных клеток и клеток внутреннего ядерного слоя. Задняя гиалоидная мембрана имеет наиболее плотную адгезию по краю диска зрительного нерва и в области фовеа (у молодых людей). Плотность данного контакта уменьшается с возрастом.

Сетчатка и хориоидея имеют особую организацию и состоят из нескольких параллельных слоев. Помимо параллельных слоев, в сетчатке имеются трансверзальные структуры, соединяющие между собой различные слои.

В норме капилляры сетчатки с определенной организацией клеток и капиллярных волокон представляют собой истинные барьеры для диффузии жидкости. Вертикальные (клеточные цепочки) и горизонтальные структуры сетчатки объясняют особенности расположения, размера и формы патологических скоплений (экссудата, кровоизлияний и кистовидных полостей) в ткани сетчатки, которые обнаруживаются на ОКТ.

Анатомические барьеры по вертикали и горизонтали препятствуют распространению патологических процессов.

  • Вертикальные элементы - Клетки Мюллера соединяют внутреннюю пограничную мембрану с наружной, простираясь через слои сетчатки. Кроме того, к вертикальным структурам сетчатки относятся клеточные цепочки, которые состоят из фоторецепторов, связанных с биполярными клетками, которые, в свою очередь, контактируют с ганглиозными клетками.
  • Горизонтальные элементы:слои сетчатки - Внутренняя и наружная пограничные мембраны образованы волокнами клеток Мюллера и легко распознаются на гистологическом срезе сетчатки. Внутренний и наружный плексиформные слои содержат горизонтальные, амакриновые клетки и синаптическую сеть между фоторецепторами и биполярными клетками с одной стороны и биполярными и ганглиозными клетками - с другой.
    С гистологической точки зрения плексиформные слои не являются мембранами, но в некоторой степени выполняют функцию барьера, хоть и гораздо менее прочного, чем внутренняя и наружная пограничные мембраны. Плексиформные слои включают сложную сеть волокон, образующих горизонтальные барьеры при диффузии жидкости сквозь сетчатку. Внутренний плексиформный слой более резистентен и менее проницаем, чем наружный. В области фовеа волокна Генле формируют солнцеподобную структуру, которую можно четко увидеть на фронтальном срезе сетчатки. Колбочки располагаются в центре и окружены ядрами фоторецепторных клеток. Волокна Генле соединяют ядра колбочек с ядрами биполярных клеток на периферии фовеа. В области фовеа клетки Мюллера ориентированы по диаго- нали, соединяя внутреннюю и наружную пограничные мембраны. Благодаря особой архитектонике волокон Генле скопление жидкости при кистовидном макулярном отеке имеет форму цветка.

Сетчатка и хориоидея образованы слоистыми структурами с различной рефлективностью. Методика сегментации позволяет выделить отдельные слои гомогенной рефлективности, как высокой, так и низкой. Сегментация изображения дает возможность также распознавать группы слоев. В случаях патологии слоистая структура сетчатки может нарушаться.

В сетчатке выделяют наружные и внутренние слои (наружную и внутреннюю сетчатку).

  • Внутренняя сетчатка включает слой нервных волокон, ганглиозных клеток и внутренний плексиформный слой, который служит границей между внутренней и наружной сетчаткой.
  • Наружная сетчатка - внутренний ядерный слой, наружный плексиформный слой, наружный ядерный слой, наружную пограничную мембрану, линию сочленения наружных и внутренних сегментов фоторецепторов.

Многие современные томографы позволяют проводить сегментацию отдельных ретинальных слоев, выделять наиболее интересующие структуры. Функция сегментации слоя нервных волокон в автоматическом режиме была первой из подобных функций, введенных в программное обеспечение всех томографов, и остается основной в диагностике и мониторинге глаукомы.

Рефлективность ткани

Интенсивность сигнала, отраженного от ткани, зависит от оптической плотности и способности данной ткани поглощать свет. Рефлективность зависит от:

  • количества света, достигающего заданного слоя после поглощения в тканях, через которые он проходит;
  • количества света, отраженного данной тканью;
  • количества отраженного света, попадающего на детектор после дальнейшей абсорбции тканями, через которые он проходит.

Структура в норме (рефлективность нормальных тканей)

  • Высокая
    • Слой нервных волокон
    • Линия сочленения наружных и внутренних сегментов фоторецептров
    • Наружная пограничная мембрана
    • Комплекс пигментный эпителий - хориокапилляры
  • Средняя
    • Плексиформные слои
  • Низкая
    • Ядерные слои
    • Фоторецепторы

Вертикальные структуры, такие как фоторецепторы, обладают меньшей отражательной способностью, чем горизонтальные (например, нервные волокна и плексиформные слои). Низкая рефлективность может быть вызвана снижением отражательной способности ткани в связи с атрофическими изменениями, преобладанием вертикальных структур (фоторецепторы) и полостей с жидкостным содержимым. Особенно отчетливо структуры с низкой рефлективностью можно наблюдать на томограммах в случаях патологии.

Сосуды хориоидеи гипорефлективны. Рефлективность соединительной ткани хориоидеи расценивается как средняя, иногда она может быть высокой. Темная пластинка склеры (lamina fusca) выглядит на томограммах как тонкая линия, супрахориоидальное пространство в норме не визуализируется. Обычно хориоидея имеет толщину около 300 микрон. С возрастом, начиная с 30 лет, отмечается постепенное снижение ее толщины. Кроме того, хориоидея тоньше у пациентов с миопией.

Низкая рефлексивность (скопление жидкости):

  • Интраретинальное скопление жидкости: ретинальный отек. Выделя- ют диффузный отек (диаметр интраретинальных полостей менее 50 мкм), кистовидный отек (диаметр интраретинальных полостей более 50 мкм). Для описания интраретинального скопления жидкости используют термины "кисты", "микрокисты", "псевдокисты".
  • Субретинальное скопление жидкости: серозная отслойка нейроэпителия. На томограмме выявляется элевация нейроэпителия на уровне кончиков палочек и колбочек с оптически пустым пространством под зоной элевации. Угол отслоенного нейроэпителия с пигментным эпителием составляет менее 30 градусов. Серозная отслойка может быть идиопатической, связанной с острой или хронической ЦСХ, а также сопровождать развитие хориоидальной неоваскуляризации. Реже обнаруживается при ангиоидных полосах, хориоидите, хориоидальных новообразованиях и т.д.
  • Субпигментное скопление жидкости: отслойка пигментного эпителия. Выявляется элевация слоя пигментного эпителия над мембраной Бруха. Источником жидкости являются хориокапилляры. Часто отслойка пигментного эпителия образует с мембраной Бруха угол 70-90 градусов, но всегда превышает 45 градусов.
ОКТ переднего отрезка глаза

Оптическая когерентная томография (ОКТ) переднего отрезка глаза - бесконтактная методика, создающая высокоразрешающие изображения переднего отрезка глаза, превосходящая возможности ультразвуковых приборов.

ОКТ может с максимальной точностью измерить толщину роговицы (пахиметрия) на всем ее протяжении, глубину передней камеры глаза на любом интересующем отрезке, измерить внутренний диаметр передней камеры, а также с высокой точностью определить профиль угла передней камеры и измерить его ширину.

Метод информативен при анализе состояния угла передней камеры у пациентов с короткой переднезадней осью глаза и большими размерами хрусталика, с целью определения показаний к oпeративному лечению, а также для определения эффективности экстракции катаракты у пациентов с узким УПК.

Также ОКТ переднего отрезка может быть чрезвычайно полезна для анатомической оценки результатов операций по поводу глаукомы и визуализации дренажных устройств имплантируемых во время операции.

  • позволяющий получить 1 панорамное изображение переднего отрезка глаза в избранном меридиане
  • позволяющий получить 2 или 4 панорамных изображения переднего отрезка глаза в 2х или 4х избранных меридианах
  • позволяющий получить одно панорамное изображение переднего отрезка глаза с большим разрешением по сравнению с предыдущим

При анализе изображений можно производить

  • качественную оценку состояния переднего отрезка глаза в целом,
  • выявлять патологические очаги в роговице, радужке, углу передней камеры,
  • анализ области оперативного вмешательства при кератопластике в раннем послеоперационном периоде,
  • оценивать положение хрусталика и интраокулярных имплантов (ИОЛ, дренажи),
  • выполнять измерения толщины роговицы, глубины передней камеры, величины угла передней камеры
  • выполнять измерения размеров патологических очагов - как относительно лимба, так и относительно анатомических образований самой роговицы (эпителия, стромы, десциметовой мембраны).

При поверхностных патологических очагах роговицы световая биомикроскопия несомненно высокоэффективна, но при нарушении прозрачности роговицы ОКТ позволит получить дополнительную информацию.

Например, при хронических рецидивирующих кератитах роговица становится неравномерно утолщена, структура неоднородна с очагами уплотнений, она приобретает неправильную многослойную структуру с щелевидным пространством между слоями. В просвете передней камеры визуализируются сетевидные включения (фибринные нити).

Особую значимость имеет возможность бесконтактной визуализации структур переднего отрезка глаза у пациентов с деструктивно-воспалительными заболеваниями роговицы. При длительно текущих кератитах разрушение стромы нередко происходит со стороны эндотелия. Таким образом, хорошо видимый при биомикроскопии очаг в передних отделах стромы роговицы может маскировать происходящую в глубоких слоях деструкцию.

ОКТ сетчатки ОКТ и гистология

Оптическая когерентная томография (ОКТ) позволяет визуализировать структуру сетчатки in vivo. Чтобы правильно трактовать изображения ОКТ, необходимо хорошо помнить гистологию сетчатки и хориоидеи, хотя томографические и гистологические структуры не всегда удается точно сопоставить.

В действительности, благодаря повышенной оптической плотности некоторых структур сетчатки линия сочленения наружных и внутренних сегментов фоторецепторов, линия соединения кончиков наружных сегментов фоторецепторов и ворсинок пигментного эпителия отчетливо видны на томограмме, в то время как они не дифференцируются на гистологическом срезе.

На томограмме можно увидеть стекловидное тело, заднюю гиалоидную мембрану, нормальные и патологические витреальные структуры (мембраны, в том числе оказывающие тракционное воздействие на сетчатку).

  • Внутренняя сетчатка
    Внутренний плексиформный слой, слой ганглиозных, или мультиполярных, клеток и слой нервных волокон формируют комплекс ганглиозных клеток или внутреннюю сетчатку. Внутренняя пограничная мембрана - это тонкая мембрана, которая образуется отростками клеток Мюллера и прилежит к слою нервных волокон.
    Слой нервных волокон формируется отростками ганглиозных клеток, которые идут до зрительного нерва. Поскольку этот слой образован горизонтальными структурами, от имеет повышенную рефлективность. Слой ганглиозных, или мультиполярных, клеток состоит из очень объемных клеток.
    Внутренний плексиформный слой образован отростками нервных клеток, здесь расположены синапсы биполярных и ганглиозных клеток. Благодаря множеству горизонтально идущих волокон этот слой на томограммах имеет повышенную рефлективность и разграничивает внутреннюю и наружную сетчатку./
  • Наружная сетчатка
    Во внутреннем ядерном слое находятся ядра биполярных и горизонтальных клеток и ядра клеток Мюллера. На томограммах он гипорефлективен. Наружный плексиформный слой содержит синапсы фоторецепторных и биполярных клеток, а также горизонтально расположенные аксоны горизонтальных клеток. На сканах ОКТ он имеет повышенную рефлективность.
  • Фоторецепторы, колбочки и палочки

    Слой ядер фоторецепторных клеток образует наружный ядерный слой, который формирует гипорефлективную полосу. В области фовеа этот слой значительно утолщается. Тела клеток фоторецепторов несколько вытянуты. Ядро практически полностью заполняет тело клетки. Протоплазма формирует коническое выпячивание на верхушке, которое контактирует с биполярными клетками.

    Наружная часть фоторецепторной клетки делится на внутренний и наружный сегменты. Последний короткий, имеет коническую форму и включает в себя диски, сложенные в последовательные ряды. Внутренний сегмент также делится на две части: внутреннюю миодальную и наружную филаментную.

    Линия сочленения между наружными и внутренними сегментами фоторецепторов на томограмме выглядит как гиперрефлективная горизонтальная полоса, расположенная на небольшом расстоянии от комплекса пигментный эпителий - хориокапилляры, параллельно последнему. Благодаря пространственному увеличению колбочек в зоне фовеа, эта линия несколько удаляется на уровне центральной ямки от гиперрефлективной полосы, соответствующей пигментному эпителию.

    Наружная пограничная мембрана образована сетью волокон, идущих в основном от клеток Мюллера, которые окружают основания фоторецепторных клеток. Наружная пограничная мембрана на томограмме выглядит как тонкая линия, расположенная параллельно линии сочленения наружных и внутренних сегментов фоторецепторов.

    Поддерживающие структуры сетчатки

    Волокна клеток Мюллера формируют длинные, вертикально расположенные структуры, которые соединяют внутреннюю и наружную пограничные мембраны и выполняют поддерживающую функцию. Ядра клеток Мюллера располагаются в слое биполярных клеток. На уровне наружной и внутренней пограничных мембран волокна клеток Мюллера расходятся в виде веера. Горизонтальные ветви этих клеток являются частью структуры плексиформных слоев.

    К другим важным вертикальным элементам сетчатки относятся цепочки клеток, состоящие из фоторецепторов, связанных с биполярными клетками и через них - с ганглиозными клетками, чьи аксоны формируют слой нервных волокон.

    Пигментный эпителий представлен слоем полигональных клеток, внутренняя поверхность которых имеет форму чаши и формирует ворсинки, соприкасающиеся с кончиками колбочек и палочек. Ядро расположено в наружной части клетки. Снаружи пигментная клетка тесно контактирует с мембраной Бруха. На сканах ОКТ высокого разрешения линия комплекса пигментного эпителия - хориокапилляров состоит из трех параллельных полос: двух относительно широких гиперрефлективных, разделенных тонкой гипорефлективной полосой.

    Некоторые авторы считают, что внутренняя гиперрефлективная полоса - это линия контакта ворсинок пигментного эпителия и наружных сегментов фоторецепторов, а другая - наружная полоса - представляет собой тела клеток пигментного эпителия с их ядрами, мембрану Бруха и хориокапилляры. По мнению других авторов, внутренняя полоса соответствует кончикам наружных сегментов фоторецепторов.

    Пигментный эпителий, мембрана Бруха и хориокапилляры тесно связаны между собой. Обычно мембрана Бруха на ОКТ не дифференцируется, но в случаях друз и небольшой отслойки пигментного эпителия она определяется как тонкая горизонтальная линия.

    Слой хориокапилляров представлен полигональными сосудистыми дольками, которые получают кровь от задних коротких цилиарных артерий и проводят ее через венулы в вортикозные вены. На томограмме этот слой входит в состав широкой линии комплекса пигментного эпителия - хориокапилляров. Основные хориоидальные сосуды на томограмме гипорефлективны и могут быть различимы в виде двух слоев: слоя средних сосудов Саттлера и слоя крупных сосудов Галлера. Снаружи можно визуализировать темную пластинку склеры (lamina fusca). Супрахориоидальное пространство отделяет хориоидею от склеры.

    Морфологический анализ

    Морфологический анализ включает определение формы и количественных параметров сетчатки и хориоидеи, а также отдельных их частей.

    • Конкав-деформация (вогнутая деформация): при миопии высокой степени, задней стафиломе, в том числе в случаях исхода склерита, на ОКТ можно обнаружить выраженную вогнутую деформацию получаемого среза.
    • Конвекс-деформация (выпуклая деформация): встречается в случае куполообразной отслойки пигментного эпителия, также может быть вызвана субретинальной кистой или опухолью. В последнем случае конвекс-деформация более плоская и захватывает субретинальные слои (пигментный эпителий и хориокапилляры).

    В большинстве случаев саму опухоль на ОКТ локализовать не удается. Важное значение в дифференциальной диагностике имеют отек и иные изменения в прилежащей нейросенсорной сетчатке.

    Профиль сетчатки и деформация поверхности

    • Исчезновение центральной ямки свидетельствует о наличии ретинального отека.
    • Складки сетчатки, формирующиеся вследствие натяжения со стороны эпиретинальной мембраны, визуализируются на томограммах как иррегулярность ее поверхности, напоминающая "волны" или "рябь".
    • Сама эпиретинальная мембрана может дифференцироваться в виде отдельной линии на поверхности сетчатки, либо сливаться со слоем нервных волокон.
    • Тракционная деформация сетчатки (иногда имеющая форму звезды) хорошо видна на С-сканах.
    • Горизонтальные или вертикальные тракции со стороны эпиретинальной мембраны деформируют поверхность сетчатки, приводя в ряде случаев к формированию центрального разрыва.
      • Макулярный псевдоразрыв: центральная ямка расширена, ретинальная ткань сохранена, хотя и деформирована.
      • Ламеллярный разрыв: центральная ямка увеличена за счет потери части внутренних ретинальных слоев. Над пигментным эпителием ткань сетчатки частично сохранена.
      • Макулярный разрыв: ОКТ позволяет диагностировать, классифицировать макулярный разрыв и измерить его диаметр.

    В соответствии с классификацией Gass выделяют 4 стадии макулярного разрыва:

    • I стадия: отслойка нейроэпителия тракционного генеза в области фовеа;
    • II стадия: сквозной дефект ретинальной ткани в центре диаметром менее 400 мкм;
    • III стадия: сквозной дефект всех слоев сетчатки в центре диаметром более 400 мкм;
    • IV стадия: полная отслойка задней гиалоидной мембраны независимо от размера сквозного дефекта ткани сетчатки.

    На томограммах часто выявляются отек и небольшая отслойка нейроэпителия по краям разрыва. Правильная трактовка стадии разрыва возможна лишь при прохождении сканирующего луча через центр разрыва. При сканировании края разрыва не исключена ошибочная диагностика псевдоразрыва или более ранней стадии разрыва.

    Слой пигментного эпителия может быть истончен, утолщен, в ряде случаев на протяжении скана он может иметь иррегулярную структуру. Полосы, соответствующие слою пигментных клеток, могут выглядеть аномально насыщенными или дезорганизованными. Кроме того, три полосы могут сливаться вместе.

    Ретинальные друзы обусловливают появление иррегулярности и волнообразной деформации линии пигментного эпителия, а мембрана Бруха в таких случаях визуализируется как отдельная тонкая линия.

    Серозная отслойка пигментного эпителия деформирует нейроэпителий и образует со слоем хориокапилляров угол более 45 градусов. В отличие от этого, серозная отслойка нейроэпителия обычно более плоская и образует с пигментным эпителием угол, равный или менее 30 градусов. Мембрана Бруха в таких случаях дифференцируется.